Annals of Clinical Biochemistry

Alkaptonuria - many questions answered, further challenges beckon

Journal:	Annals of Clinical Biochemistry
Manuscript ID	ACB-19-235
Manuscript Type:	Review Article
Date Submitted by the Author:	28-Aug-2019
Complete List of Authors:	Davison, Andrew; Royal Liverpool University Hospital, Clinical Biochemistry & Metabolic Medicine; University of Liverpool, Liverpool Health Partners, Musculoskeletal Biology I, Institute of Ageing and Chronic Disease Hughes, Andrew; Royal Liverpool and Broadgreen University Hospital Trust, Clinical Biochemistry and Metabolic Medicine; University of Liverpool, Musculoskeletal Biology Milan, Anna; Royal Liverpool University Hospital, Clinical Biochemistry & Metabolic Medicine; University of Liverpool, Musculoskeletal Biology Sireau, Nic; AKU Society Gallagher, James; University of Liverpool, Musculoskeletal Biology Ranganath, Lakshminarayan; Royal Liverpool University Hospital, Clinical Biochemistry & Metabolic Medicine; University of Liverpool, Musculoskeletal Biology
Keywords:	Inborn errors of metabolism < Clinical studies

Clinical Sciences Review Committee (CSRC)

Commissioned Review

CSRC Article Number	
Review Title	Alkaptonuria - many questions answered, further
	challenges beckon
Running Title	Alkaptonuria - many questions answered, further
	challenges beckon
Author(s)	Davison AS ^{1,2,*,#} , Hughes AT ^{1,2} , Milan AM ^{1,2,†} , Sireau N ³ ,
	Gallagher JA ² , Ranganath LR ^{1,2}
Author Affiliations	Department of Clinical Biochemistry and Metabolic
Including email	Medicine, Liverpool Clinical Laboratories, Royal Liverpool
address for each	University Hospitals Trust, Liverpool, UK1; Musculoskeletal
author	Biology I, Institute of Ageing and Chronic Disease,
	University of Liverpool, Liverpool Health Partners,
	Liverpool, UK2; AKU Society, Cambridge, UK3
	Corresponding author: Andrew Davison
	andrew.davison@rlbuht.nhs.uk
Word Count	4963 (excludes all tables and legends)

Declaration of Interests

Andrew S Davison is funded through a National Institute for Health Research (NIHR) Doctoral Research Fellowship (grant code: HCS DRF-2014-05-009). This article presents independent research funded by NIHR. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care.

Health and Social Care.	
Funding	This research received no specific grant from any funding
	agency in the public, commercial, or not-for profit sectors.
Ethical Approval	Not applicable
Guarantor	ASD
Contributorship	All authors contributed to writing this manuscript. ASD
	integrated contributions, revised and edited entire review.
Acknowledgements	None
	This article was prepared at the invitation of the Clinical
	Sciences Reviews Committee of the Association for
	Clinical Biochemistry and Laboratory Medicine.
Key Words	Alkaptonuria; nitisinone; tyrosine; metabolism

Title: Alkaptonuria - many questions answered, further challenges beckon

Authors: Davison AS^{1,2,*,#}, Hughes AT^{1,2}, Milan AM^{1,2,†}, Sireau N³, Gallagher JA², Ranganath LR^{1,2}

Department of Clinical Biochemistry and Metabolic Medicine, Liverpool Clinical Laboratories, Royal Liverpool University Hospitals Trust, Liverpool, UK¹; Musculoskeletal Biology I, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool Health Partners, Liverpool, UK²; AKU Society, Cambridge, UK³ # - ORCID 0000-0001-5501-4475; † - ORCID 0000-0002-0452-2338

*Corresponding Author: A S Davison

Corresponding Author Address: Department of Clinical Biochemistry and Metabolic Medicine, Liverpool Clinical Laboratories, Royal Liverpool University Hospitals Trust, Liverpool, L7 8XP, UK; Telephone: 0151 706 4011; Fax: 0151 706 4250; e-mail: andrew.davison@rlbuht.nhs.uk;

Key words: Alkaptonuria; nitisinone; tyrosine; metabolism

Word count: 4577 (excluding tables/figures, and associated legends)

Number of: Table – 4, Figures – 3

Abstract

Alkaptonuria (AKU) is an iconic rare inherited inborn error of metabolism affecting the tyrosine metabolic pathway, resulting in the accumulation of homogentisic acid (HGA) in the circulation, and significant excretion in urine. Dating as far back as 1500 B.C. in the Egyptian mummy Harwa, HGA was shown to be central to the pathophysiology of AKU through its deposition in collagenous tissues in a process termed ochronosis. Clinical manifestations occurring as a consequence of this are typically observed from the third decade of life, are lifelong and significantly affect the quality of life. In large supportive and palliative treatment measures are available to patients, including analgesia, physiotherapy and joint replacement. Studying the natural history of AKU, in a murine model and human subjects, has provided key insights into the biochemical and molecular mechanisms underlying the pathophysiology associated with the disease, and has enabled a better understanding of the common disease osteoarthritis.

In the last decade a major focus has been on an unlicensed disease modifying therapy called nitisinone. This has been shown to be highly efficacious in reducing HGA, and it is hoped this will halt ochronosis, thus limiting the clinical complications associated with the disease. A well-documented metabolic consequence of nitisinone therapy is hypertyrosinaemia, the clinical implications of which are uncertain. Recent metabolomic studies have helped understand the wider metabolic consequences of nitisinone therapy.

Case Vignette

It was back in 2000 that I first heard about the ultra-rare disease Alkaptonuria (AKU). My first son had just been born and we had noticed that his nappies were staining red-black. We immediately called an emergency doctor who said it was dye from the red cabbage my wife had eaten that was somehow getting into the breast milk and into the baby.

We could not believe this, so we went to see our GP who eventually diagnosed it as AKU after several months of a variety of tests. This was the first we had ever heard about this disease, and the information we found on the internet was alarming. That is why when I heard that AKU patient Robert Gregory was setting up an AKU Society with his doctor Lakshminarayan Ranganath, I immediately went to see them in Liverpool to see what could be done.

In the early days, the AKU Society focused on providing a website with the latest information about AKU for patients around the world. We then set up an AKU Information Centre based at the Royal Liverpool University Hospital, whose job was to contact all 50,000 GPs in the UK in order to identify patients with AKU.

Meanwhile, the research was gathering pace thanks to James Gallagher who set up a basic science programme at the University of Liverpool. The AKU Society funded a cell model of the disease, followed by an animal model and a natural history study.

In 2012, the AKU Society was instrumental in securing funding to set up the world's first Alkaptonuria treatment centre, based at the Royal Liverpool University Hospital under Lakshminarayan Ranganath's leadership. A key aim was to provide all the

support that had been lacking until then for AKU patients, such as dietary advice, systematic screening, and advice on jobs and lifestyle.

That same year, we also secured £5m in funding from the European Commission in order to implement a clinical development programme for a promising drug called nitisinone.

All this shows what can be achieved when a patient group works closely with clinicians and scientists in order to help patients with an ultra-rare disease.

History of AKU

Alkaptonuria (AKU; OMIM 203500) is an ancient disease; there are several reports of suspected ochronosis and spondyloarthropathy in Egyptian mummies, including Harwa, which is currently housed in the Field Museum in Chicago and dates from 1500 B.C.¹

Scribonius (1584) provided the earliest record of someone passing dark urine in which a school boy passed urine "as dark as ink". Twenty-five years later Schenck (1609) reported a similar phenomenon in a Carmelite monk. Similar cases were reported over the next 200 years.

The name Alkaptonuria was first introduced by Böedeker in 1859² who analysed urine from a 44yr old man with lumbar spine pain and poor mobility. He identified a substance that reduced alkaline copper solutions, but the patient did not have any symptoms of diabetes, and unlike glucose the urinary substance would not reduce alkaline bismuth. He also observed that when left to stand the urine darkened. He further described that this occurred from the surface of the solution downwards and that this darkening accelerated on addition of alkali substances and quickly took up a large volume of oxygen. He described this new substance "alkapton".

Virchow³ later provided the first description of pigmented tissues in AKU and coined the term 'ochronosis' because of how homogentisic acid (HGA) pigment appeared to be 'ochre' under microscopy. Black pigmentation was observed in large weight-bearing joints including intervertebral discs, menisci, laryngeal and tracheal cartilage. The ligaments and synovial tissues displayed pigmentation to a lesser extent than

cartilage. When the black pigmentation was observed macroscopically it appeared vellow.

The chemical structure of 'alkapton' was identified in 1891,⁴ and named homogentisic acid (HGA) (Figure 1) because of its structural similarity to gentisic acid.

Figure 1. Chemical structures and associated pKa's (denoted in blue) of (a) gentisic acid and (b) homogentisic acid

It was in 1902 that Albrecht made the connection between ochronosis of tissues, ochronotic arthritis and AKU. Later in 1904, Osler was the first person to publish evidence to document the diagnosis of AKU in living individuals. The sufferer in question displayed pigmentation of the ears and the sclera, the latter being termed 'Osler's sign'.

At this time the disorder was described as the result of an alternative course of metabolism, harmless and usually congenital, and lifelong.⁵ Most famously Garrod presented his work at the Croonian lectures in 1908, whereby he introduced the concept of 'inborn errors of metabolism' to demonstrate that albinism, AKU,

cystinuria and pentosuria were all resultant of Mendelian inheritance, causing variation in metabolism of normal metabolites on normal pathways.⁶

Fifty years later⁷, homogentisate 1,2-dioxygenase (HGD; E.C.1.13.11.5), an enzyme involved in the metabolism of tyrosine was identified as the enzymatic defect responsible for AKU (Figure 2).

Figure 2. Tyrosine metabolic pathway (adapted from Taylor et al.⁸) – highlighting the site of the enzyme defect observed in AKU and the site of action of nitisinone, a reversible competitive inhibitor of *4-hydroxyphenylpyruvic dioxygenase* (*HPPD* EC 1.13.11.27).

Genetic basis of AKU

The *HGD* gene was first cloned and sequenced from *Aspergillus nidulans*.⁹ The gene maps to the human chromosome 3q13.33

(http://www.ncbi.nlm.nih.gov/gene/3081, Gene ID: 3081) and is a single-copy gene spanning 54 363bp of genomic sequence, with 14 exons coding for a protein of 445 amino acids that assembles into a functional hexamer arranged as a dimer of trimers. 10 Liver and kidneys are the major sites of HGD activity.

AKU arises from homozygous or compound heterozygous mutations in the *HGD* gene. There have been 212 unique AKU mutations identified (*HGD* mutation database: http://hgddatabase.cvtisr.sk, accessed 03/06/2019) of which the most frequent are missense variants (67%), followed by splicing (12.2%) and frameshift (12.2%).

AKU mutations are distributed throughout the entire *HGD* gene with some prevalence in exons 3, 6, 7, 8 and 13.¹¹ Haplotype analysis has been used to trace the migration of specific AKU alleles through human history. The three most widespread AKU mutations in Europe, M368V, V300G, and P230S¹¹ (20%, 5%, and 5% of European AKU mutations, respectively) appear to be ancient mutations that were introduced into Europe with the founder populations. Some *HGD* mutations are found in many countries, for examples S59fs or one of the first identified AKU mutations, V300G, as well as the most frequent European mutation M368V.¹¹ On the other hand, there are mutations rather unique to specific regions; for example c.87+1G>A (p.(Tyr6_Gln29del)) for the gypsy community Narikuravar in India,¹² A122V in Jordan¹³ and C120W for the Dominican Republic.¹⁴ The largest number of

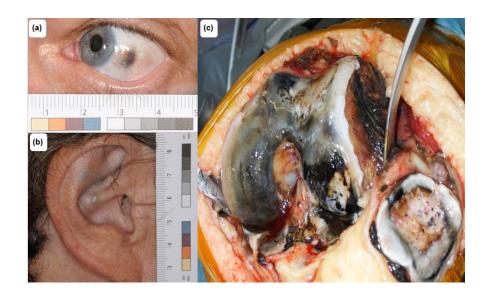
cases of AKU (>200) have been reported in Slovakia,¹⁵ the majority clustering in a small region in the north west of the country. To date, there is no explanation for this massive increase in the incidence of AKU causing mutations in this region; it cannot be explained by a classical founder effect. In contrast, the high incidence of AKU in the Dominican Republic arose through a classical founder effect with C120W as the mutation.¹⁴

As yet, no relationship between specific mutations and clinical manifestations has been established, although several AKU mutations have been identified, which have been shown to have residual catalytic activities in functional assays. Interestingly, for eight AKU patients no *HGD* mutations were identified, and in 22 cases only one mutant allele was found.¹³

Recently a large genomic deletion of exon 2 including intronic sequences was reported in one case from Lebanon¹⁶ and has also been identified in two siblings from Israel.¹³ It is possible that, in addition to deep intronic mutations, large deletions encompassing one or more exons might be occurring in cases where genomic sequencing does not lead to mutation identification.

Animal models

In 1994, an AKU mouse model generated by ethylnitrosourea (ENU) mutagenesis, was identified by Montagutelli et al.¹⁷ due to the presence of darkened cage bedding caused by elevated HGA in the urine. The AKU mutation was backcrossed onto the BALB/cByJ and C57BL/6J murine backgrounds. The murine *HGD* gene was cloned and the mutation identified to be a splice mutation that results in a truncated HGD


protein. ¹⁸ This mouse harbours a recessive splice site mutation, c.1006+2T>A, in exon 10 of *HGD* gene (GenBank NM_013547) located on mouse chromosome 16. This mutation leads to skipping of one or two exons and the generation of a premature stop codon. Initially it was reported the AKU mouse model had the metabolic defects of AKU, but that the tissues did not undergo ochronosis. Several theories were suggested including the short life span of the mouse and the endogenous production of ascorbic acid. However, it was subsequently demonstrated that this AKU model (BALB/c *HGD*-/-) has relatively stable elevated plasma HGA concentrations and extensive chondrocyte pigmentation, via a modified Schmorl's stain. ¹⁹ This model showed that initial pigmentation early in life is pericellular, progressing linearly with age to the intracellular compartment. Treatment with a drug called nitisinone, which blocks the enzyme *HPPD* forming HGA, was shown to completely prevent chondrocyte pigmentation in mice. ²⁰⁻²¹

This *HGD*-AKU mouse model has greatly contributed to our knowledge of AKU, in terms of both the disease pathology and treatment, however ENU mutagenesis is not a targeted approach to create a model of genetic disease. Due to the high frequency of DNA mutations that ENU causes there could potentially be other unknown and uncharacterised mutations in this mutagenesis model affecting the disease phenotype. To overcome this uncertainty, a new targeted mouse model of AKU has been raised in the C57BL/6 background using a mutant knockout-first allele obtained from the KOMP repository (www.komp.org). In addition to being targeted, the knockout-first model harbours a lacZ/LacZ transgene for localising gene expression and can be manipulated via FLP/FRT and Cre/LoxP recombination to obtain an inducible and tissue specific knockout. The conditional allele can be used

to investigate the effect of partial *HGD* knockout on the AKU phenotype. With gene therapy becoming a likely tool in the future, this conditional mouse model provides an insight into the level and location of *HGD* expression that could rescue the AKU phenotype in humans.

Clinical manifestations observed in patients

Helliwell et al.²² demonstrated at autopsy the plethora of features observed in AKU confirming the true multisystem nature of the disease (Figure 3). There are few signs and symptoms in the young²³ with symptoms appearing around age 30 years and progressively increasing in severity with age, apart from dark urine and renal stones.²⁴⁻²⁶ The various clinical features in AKU can be appreciated from the Alkaptonuria Severity Score Index (AKUSSI) (Table 1). This incorporates multiple, clinically meaningful outcomes that can be described in a single score, including kidney and prostate stones, aortic stenosis, bone fractures, tendon/ligament/muscle ruptures, kyphosis, scoliosis, joint replacements and all other clinical features of AKU.

Figure 3. Clinical features frequently observed in AKU that should alert a clinician to its possible diagnosis. (a) Pigmentation of the sclera of the eye, (b) slate grey pigmentation of cartilage in the ear and (c) extensive osteoarthritis of the large joints. Here is an image of a knee joint at surgery showing pigmentation and fragmentation of the articular cartilage.

CLINICAL AKUSSI					
Feature	Test	Feature	Test		
Eye ochronosis: Right eye nasal* Right eye temporal*	Photograph Photograph	Eye ochronosis: Left eye nasal* Left eye temporal*	Photograph Photograph		
Ear ochronosis: Right ear**	Photograph	Ear ochronosis: Left ear**	Photograph		
Prostate stones: (4 per episode)	Ultrasound/ History	Kidney stones: (4 per episode)	Ultrasound/ History		
Osteopenia: (4)	CT-BMD	Hearing impairment: (4)	History		
Aortic sclerosis: (6), ad	ortic stenosis: (mild, mo	oderate, severe) (8, 10, 12)	Echocardiography		
	JOINT	AKUSSI			
Fracture: (8 per fracture)	History	Muscle rupture: (8 per rupture)	History		
Ligament rupture: (8 per rupture)	History	Tendon rupture: (8 per rupture)	History		
Joint pain score: (1 for each large joint are	History				
Scintigraphic scan join (2 for each large joint; 14	^{18F} PET-CT				
Number of arthroscopi	es: (2 each)		History		
Number of joint replace	ements: (4 each)		History		
	SPINE	AKUSSI			
Spinal pain score: (2 each for cervical, thor	History				
Scintigraphic scan spin (6 areas; 4 points for each thoracic, cervical, sacroi	^{18F} PET-CT				
Kyphosis: (4)	X-ray				
Scoliosis: (4)	X-ray				
ALL AKUSSI (CLINICAL + JOINT + SPINE)					

Table 1. Summary of Alkaptonuria Severity Score Index (AKUSSI). The various clinical features observed in AKU are scored in the manner indicated in the table. Assessments include subjective pain scoring, photographs, history, ultrasound abdomen, echocardiogram, computed tomography bone densitometry (CT-BMD), x-ray spine and positron emission tomography—computed tomography (^{18F}PET-CT) scan. *Eye pigmentation: 1, 2 and 3 points for slight, moderate and marked conjunctival pigmentation and 4, 6 and 8 points for scleral pigmentation; **Ear pigmentation: 2 and 4 points for slight and marked pigmentation.²⁴⁻²⁵

Biochemical consequences

AKU is a biochemical defect that arises in the tyrosine degradation pathway (Figure 2), whereby deficiency of HGD results in significantly elevated serum and urine HGA.^{7, 27-30} With advancements in analytical methodologies HGA has been quantified to be present in milimolar concentrations in urine from AKU patients,²⁷⁻³⁰ this is in contrast to healthy individuals where urinary HGA has been reported as <1.1 μmol/L.³¹ Our group reported the circulating concentration of HGA using liquid chromatography tandem mass spectrometry (LC-MS/MS) and although an order of magnitude lower than excreted concentrations, HGA circulates in micromolar quantities in AKU.²⁹⁻³⁰ Of note, although AKU is a defect in the tyrosine degradation pathway, serum and urine tyrosine are within normal reference range prior to administration of nitisinone.^{27-30, 32}

Management and Treatment

There is still no approved disease-modifying therapy in AKU. Gene and enzyme replacement therapies are still some way off and currently treatment remains

supportive and palliative (Table 2). Low protein diet has been used with little effect, ^{27,33} and ascorbic acid used as an anti-oxidant to prevent the conversion of HGA to ochronotic pigment, has unproven efficacy.²⁷ Lifestyle counselling and physiotherapy can be beneficial to patients, but are underutilised.

Supportive analgesia and palliative arthroplasty are crucial to managing the severe musculoskeletal pain in AKU.^{26-27,34-35} Local anaesthetic patches such as lidocaine are also beneficial. Intermittent colchicine has also been used to control episodic pain.³⁴ Transcutaneous electrical nerve stimulation and acupuncture are widely used to control pain in patients attending the National AKU Centre (NAC). Neuromuscular blocks and trigger point injections can also provide long-term analgesia in AKU. Joint replacement is inevitable, and highly effective. Spinal decompression surgery is needed when spinal compression complicates AKU.³⁵⁻³⁷ Aortic valve disease is highly prevalent and is almost universal by age 60 years in AKU.³⁸ Aortic valve surgery is better carried out electively before left ventricular decompensation ensues, but is technically challenging in ochronotic aortic tissue and sometimes fatal. Stone disease is also common in AKU due to increased HGA. To minimise the formation of renal stones and prevent renal impairment, it is important to emphasize good hydration.

Treatment modality	Mechanism of action	Nature
Joint replacements	Replacing damaged organ	Palliative
Acupuncture	Mediated by endogenous opioids	Supportive
Oral analgesia	Relief from pain depending on drug	Supportive
Parenteral Analgesia	Mainly opioid effect	Supportive
Physiotherapy	Mechanical stretching and strengthening	Supportive
Transcutaneous electrical nerve stimulation	Activation of endogenous opioids	Supportive
Ascorbic acid	Anti-oxidant preventing pigment formation	Unproven as disease modifying
Chondroitin/Glucosamine	Production of glycosaminoglycans	Unproven as disease modifying
Low protein diet	Reduction in tyrosine intake	Unproven as disease modifying

Table 2. Supportive and palliative treatment modalities available for AKU

Disease modifying therapy through inhibition of 4-HPPD

Nitisinone (2-[2-Nitro-4-(trifluoromethyl)benzoyl]-1,3-cyclohexanedione, C₁₄H₁₀F₃NO₅, MW 329.2) is a reversible competitive inhibitor of 4-HPPD in the tyrosine metabolic pathway (Figure 2).³⁹ Developed as a herbicide, nitisinone was found to be highly efficacious in hereditary tyrosinemia type 1 (HT1, OMIM 276700), which is now standard first-line therapy.³⁹⁻⁴¹ The mode of action of nitisinone led to the recognition that it could be effective in AKU. Decreasing circulating concentrations of HGA, through the inhibition of 4-HPPD should in principle decrease ochronosis, thus preventing the progression of disease in AKU. As nitisinone targets and corrects the main metabolic abnormality responsible for AKU, it should prevent or reduce its associated morbidity, if started before the symptomatic phase, and alter progression in those already symptomatic. There are several key studies which have looked at the key metabolites in the tyrosine pathway, both before and after a trial of nitisinone therapy (Table 3).

Trial design	n	Pre nitisinone concentrations	Dose	Duration	Overall results	Additional findings	Reference
Open, uncontrolled proof of concept. No dietary modifications	58#	[HGA] _s 39.3±15.5 [HGA] _U 2.4-73 [Tyrosine] _s 79±18	0.35-1.4 mg twice daily	9 and 10 days	73-95 % reduction in [HGA] _U	Increased urinary hydroxyphenylpyruvate 10-15 fold increase in [Tyrosine] _s	27
Open-label, uncontrolled, proof of concept. Reduced protein intake (last week only)	9	[HGA] _s 10.2±6.2 [HGA] _U 23.9±10.6 [Tyrosine] _s 68±18	0.35-1.05 mg twice daily	15 weeks (n=5 completed)	94 % reduction in [HGA] _U Serum HGA below LOQ	[HGA] _U reduced to ~97% when protein restricted (<40 g/day) 10 fold increase in [Tyrosine] _s	42
Randomised, parallel group, single blind	20	[HGA] _s 18.7-62.4 (mean 34.1) [HGA] _U 33.8±11.8 [Tyrosine] _s 60±13	No treatment, 2 mg daily	36 Months	>95 % reduction in [HGA] _U 95 % reduction in [HGA] _S		28
Randomised, open label, parallel-group design	40	[HGA] _U 14.4-69.5	No treatment, 1, 2, 4, 8 mg once daily	4 weeks	98.8 % reduction in [HGA] _U (on 8mg dose)	10-12 fold increase in [Tyrosine] _s from baseline	29
Off licence use of nitisinone	28	[HGA] _S 30.0±12.9 [HGA] _U 20.6±5.5 [Tyrosine] _S 42±13.3	2 mg daily after 3 months (2 mg given every other day up to 3 months)	24 Months	88.8 and 94.1 % reduction in [HGA] _U at 3 months and two years. 83.2 % reduction in [HGA] _S at two years	Serum nitisinone 1.58±0.52 µmol/L at two years	30

Table 3. Summary of clinical studies that have evaluated nitisinone for the treatment of AKU. # - only 2/58 received nitisinone; LOQ

– lower limit of quantification. $[HGA]_S$ – serum HGA concentration; $[HGA]_U$ – urinary HGA concentration; $[Tyrosine]_S$ – serum tyrosine concentration; $[Tyrosine]_U$ – urinary tyrosine concentration. All serum and urine HGA and tyrosine concentrations are expressed in μ mol/L and mmol/24hr, respectively and as mean±SD where data were available otherwise a range is quoted.

Clinical trials of nitisinone at the National Institutes of Health (NIH), USA

In the earliest study of AKU²⁷ (n=58) two women were given nitisinone at a 30-fold lower dose than that used in HT1,⁴¹ urine and plasma HGA, and serum tyrosine concentrations were measured in all patients pre- and post-treatment. Within this study, there were also 10 patients on ascorbic acid doses ranging from 0.25-4 g/day (recommended daily dose is 0.065-0.09 g/day, with an upper limit of 2g). Notable in this study was there was no correlation with urine HGA excretion and genetic mutation.²⁷ High dose ascorbic acid treatment has not been proven efficacious.^{27,43-44} The mean urinary HGA in those on high dose ascorbic acid was not significantly different from the untreated AKU patients. In addition, those on a low protein diet also showed no difference in urinary HGA excretion.

Another open-label study at the NIH, employed nitisinone (2.1 mg daily), demonstrating a 95 % decrease in urinary HGA excretion in 9 AKU adult patients over a 4-month period. This study also confirmed that a strict protein restriction (one week only) produced an additional decrease in urine HGA concentrations (Table 3). Various definitions of protein restriction led to some of the ambiguity in effects with the recommended daily allowance (RDA) defined as 0.8 g protein/kg of body weight; approximately 56 or 46 g/day for the average sedentary male or female, respectively. Where a reduction in urinary HGA has been quantitated, protein has been restricted to <40 g/day and as low as 20 g/day, which is not sustainable long-term and would lead to detrimental effects on muscle strength, a side-effect which would worsen these patients' symptoms.

In a third study, a three-year single-blind clinical trial of 20 patients, the nitisinone group (2 mg/day) showed a sustained decrease in mean urinary HGA from 30.3 to 0.74 mmol/day.²⁸ Mean plasma HGA concentrations fell from 34.1 to 1.82 μ mol/L after treatment. Urine and plasma HGA decreased by 98 and 95 %, respectively, but despite this the study reported inconclusive as the clinical primary and secondary outcome measures did not show benefit from the treatment.

Clinical trials of nitisinone in the UK and Europe

The impetus for continued clinical development of nitisinone use in AKU came from Liverpool in the UK. A two-pronged strategy was adopted: (1) licensing of nitisinone for AKU through clinical trials and (2) use of nitisinone off-label to determine its efficacy and safety in AKU. The first clinical trial was a dose-ranging study (part of a programme called DevelopAKUre, funded by the European Commission as part of the Framework Programme 7) called SONIA 1 (Suitability Of Nitisinone In Alkaptonuria 1) and concluded that nitisinone 8 mg was the dose that decreased urine HGA most efficaciously.²⁹ Nitisinone 10 mg capsule once daily is now being trialled in SONIA 2 (Suitability Of Nitisinone In Alkaptonuria 2); this is a 4-year outcomes study where the clinical phase is due to be completed in 2019. If successful, it should enable an application to the European Medicines Agency to approve the use of nitisinone in AKU.

Off-label use of nitisinone

In 2012, NHS England Highly Specialised Services designated Liverpool as the NAC, and approved the use of nitisinone 2 mg daily. This off-label use of nitisinone in AKU is carried out by multidisciplinary team of healthcare professionals. While the

nitisinone is being prescribed as part of providing a service to patients, as required by NHS England, the service is 'protocolised' to allow collection of high-quality data to determine the efficacy and safety of nitisinone. The three-year data on the use of nitisinone in the NAC shows partial reversal of ochronosis and slower progression of the disease. ⁴⁵⁻⁴⁶ This is the first time that the disease process and outcomes in AKU have been beneficially modified by any therapy.

Nitisinone-induced hypertyrosinaemia

The universal metabolic complication of nitisinone therapy is hypertyrosinaemia; reported in both HT1^{40, 47-48} and AKU.^{28-30, 32, 42} The dose of nitisinone used in AKU trials is significantly lower compared with that in HT1; mg/day compared with 1-2 mg/kg body weight in HT1; however the increase in tyrosine is comparable.

Clinically in HT1 treatment is commenced from an early age and with the knowledge of cognitive impairment,⁴⁹⁻⁵¹ serum tyrosine concentrations are regularly monitored and as a guide the aim should be to keep tyrosine concentrations between 200-400 µmol/L up to the age of about 12 years. This is not easy to achieve and some centres allow plasma tyrosine concentrations up to 500 µmol/L.⁵²

There is no direct evidence of altered cognition or neurotransmitter metabolism in AKU patients with hypertyrosinaemia. A short-term study has demonstrated increased urinary excretion of the dopamine metabolite, 3-methoxytyramine (3-MT) and decreased urinary normetadrenaline over a four-week period. The increased urinary 3MT was confirmed in patients attending the NAC over a two-year period with concentrations increasing two-fold of the normal reference range. The marked increase in 3MT excretion suggests nitisinone alters peripheral metabolism of

catecholamines, more specifically dopamine. Metabolism of catecholamine neurotransmitters is complex due to the multiple origins and urine concentrations will reflect circulating concentrations, renal uptake and renal synthesis. ⁵⁵ Of interest in this larger cohort there was no concurrent change in Beck's Depression Inventory II scores associated with these patients supporting the renal synthesis hypothesis. ⁵⁴ Interestingly, the previous change in normetadrenaline was not reflected over this longer time period; with the increased patient numbers and monitoring of patients over two years the NAC data is likely to reflect changes in those on long term therapy. Reassuringly a study using mass spectrometry imaging demonstrated that monoamine neurotransmitter patterns in brain tissue from a murine model of AKU did not change following treatment with nitisinone. ⁵⁶

Despite careful use of nitisinone, tyrosine ocular keratopathy, as well as skin rash are observed in approximately 5 % treated with the 2 mg dose. $^{28-29, 57-59}$ With circulating tyrosine concentrations around >800 μ mol/L, the solubility of tyrosine is exceeded, and corresponds to ocular tyrosine concentrations of 3500 μ mol/L, 60 the point at which tyrosine crystallises in the cornea leading to corneal keratopathy; similar critical tyrosine thresholds for cutaneous and brain effects have not been described. Published cases have demonstrated that eye symptoms resolve upon cessation of nitisinone and either a lower dose and or protein restriction enables the patient to re-start nitisinone. In HT1, studies have also demonstrated ocular keratopathy (~9 %) in patients on nitisinone treatment. $^{61-62}$

Introne et al²⁸ demonstrated that the average serum tyrosine was approximately 800 μ mol/L with the highest measured being 1500 μ mol/L on a 2 mg daily dose (no

dietary restriction). Ranganath et al.²⁹ added to this with SONIA 1 trial whereby a short-term study examined the effects of varying nitisinone doses (1-8 mg daily) on the metabolic profile. A dose-dependent decrease in urine HGA excretion was measured with a 98.8 % reduction at 8 mg/day, which was not reflected in serum tyrosine concentrations; although there was the expected 10-fold increase, this was not dose-dependent. This supports the findings of Introne et al.²⁸ with all patients having serum tyrosine >500 μ mol/L and the highest 1117 μ mol/L (on 4mg daily dose). Data from the NAC corroborates these previous studies with the longitudinal monitoring of tyrosine metabolites whilst treated with a 2 mg daily dose of nitisinone with a 94 % reduction in urine HGA maintained at two years with a concurrent serum HGA reduction of 83.2 %.³⁰ Mean serum tyrosine at two years was 594 μ mol/L with a large variation reflecting the dietary protein contribution.

Rationale for treatment of nitisinone induced hypertyrosinaemia

Limiting phenylalanine and tyrosine amino acid intake should mitigate hypertyrosinaemia. The minimum dietary recommendations for optimal health are phenylalanine and tyrosine intakes of 15 mg/kg/day, with an optimal dietary ratio of phenylalanine and tyrosine in mass units of 60:40, similar to the phenylalanine to tyrosine ratio seen in human tissue.⁶³

Tackling hypertyrosinaemia by switching to elemental amino acid administration free of phenylalanine and tyrosine is impractical. Instead, the emphasis is on decreasing dietary protein intake to manage hypertyrosinaemia. It is necessary to ensure the reference nutrient intake (RNI) for protein intake is met, the RNI for protein is 0.75 g/kg of body weight in the UK⁶⁴ and the RDA for protein is 0.8 g/kg of body weight in

the USA.⁶⁵⁻⁶⁶ Meeting these targets for protein should ensure that the requirement for limiting amino acids such as lysine, methionine, threonine and tryptophan are met; such an approach will guarantee adequate provision of other amino acids including phenylalanine and tyrosine.

There is a lack of guidance in the management of hypertyrosinaemia in adults, although there is some guidance in children with HT1. $^{52.63}$ The goal in these children is to maintain serum tyrosine between 200-400 μ mol/L and to avoid levels >500 μ mol/L. 52 Such stringent goals are difficult to achieve in adults with AKU as they have been used to consuming a relatively normal protein intake. At the NAC a pragmatic algorithm-based approach is employed, consistent with existing knowledge and recommendations, where the goal is to maintain circulating tyrosine as low as possible <900 μ mol/L. Values of circulating tyrosine of <500 μ mol/L are considered desirable and protein intake of 1 g/kg is considered acceptable. Action thresholds have been devised between 500 and 700, and between 700 and 900 μ mol/L, invoking lower protein intakes of 0.9 and 0.8 g/kg body weight, respectively, $^{29.45}$ while meeting minimum daily requirements. Concentrations >900 μ mol/L require in addition phenylalanine/tyrosine-free meal exchanges.

Timing nitisinone therapy and the natural history of AKU

AKU, present from birth, appears to have few features in the young. Although it was believed that ocular and ear pigment only appeared around age 30 years, careful assessment by direct tissue studies and ocular photographs has shown the presence of ocular pigment even at age 16 years (unpublished, personal communication with Ranganath

LR). A previous report in Slovakia describes the presence of ear and scleral pigment at age 12 and 13 years, respectively, but no images are presented.²³

Analytical methods for measurement of nitisinone, tyrosine, homogentisic acid
Key to the studies described within this review are the analytical methodologies
employed for the quantification of HGA and tyrosine related metabolites that have
been measured in patients with AKU (Table 4). Many of these methods involve
sample preparation coupled with an extensive and often complex analytical
technique, rendering many of these methods impractical in a modern busy clinical
laboratory.

The analytical platform adopted for measurement of tyrosine and related metabolites at the NAC is LC-MS/MS.⁶⁷⁻⁶⁸ Use of this analytical methodology has allowed for the validation of quantitative methods for serum and urinary metabolites. An important pre-analytical consideration is that samples must be acidified prior to analysis to minimise the degradation of HGA and tyrosine-related metabolites.⁶⁹

I	
2	

3 4 Sample preparation	Analytical technique	Metabolites measured	Matrix	Analytical measuring range	Inter-assay CV (%)	Reference
⁵ ₆ Acidification with 5N ₇ sulphuric acid 8	LC-MS/MS using a 10 cm x 3.0 mm, C18 3 μ m column. Gradient: 0.1%. FA in MeOH. RT 7 min	TYR, HGA, PHE IS: d ₄ -TYR, ¹³ C ₆ -HGA, D ₅ -PHE	Urine*	TYR: 10-2000 μmol/L HGA: 2-4000 μmol/L PHE: 10-500 μmol/L	Not stated	8
9Sample dilution10	Capillary electrophoresis with UV- Visible detection at 190 nm	HGA	Urine	0.02-0.16 mmol/L LOD 3.33 µmol/L	Not stated	70
130µL urine on filter 1paper eluted with 1phosphate buffer 14	HPLC using a 7.5 cm x 4.6 mm C18 3 μm column. Gradient: phosphate buffer to MeOH. RT 18 min. Detection at 260-280 nm	HGA	Urine	20-800 μmol/L LOQ 5 μmol/L	Not stated	71
¹ Deproteinisation with ¹ Berchloric acid	LC-MS/MS using a 10 cm x 3.0 mm C18 3 μ m column. Gradient: 0.1 %. FA in MeOH. RT 7 min	TYR, HGA, NTBC IS: d ₂ -TYR, ¹³ C ₆ -HGA, ¹³ C ₆ -NTBC	Serum	TYR: 10-500 μmol/L HGA: 3-2000 μmol/L NTBC: 0.2-10 μmol/L	<5 <8 <10	68
Acidification with 5N 25 alphuric acid	LC-MS/MS using a 10 cm x 3.0 mm C18 3 µm column. Gradient 0.1 %. FA in MeOH at 0.6 mL/min. RT 7 min	TYR, HGA, IS: d ₂ -TYR, ¹³ C ₆ -HGA	Urine	TYR: 20-4000 μmol/L HGA: 20-16,000 μmol/L	<10 <5	67
⊋Deproteinisation with ⊇ACN and IS 24 25	LC-MS/MS using a 5 cm x 2.1 mm C18 1.7 μ m column. Gradient: ammonium acetate in MeOH. RT 4 min	NTBC IS: 2-Nitro-4- (trifluoromethly) benzoic acid	Plasma	0.75-150 μmol/L LOD 0.15 μmol/L	<20	72
2Plasma - precipitation 2With ACN. 2Blood spot - elution 2With MeOH.	LC-MS/MS using a 15 cm x 4.6 mm C8 5 μm column. RT 12 min	NTBC IS: Mesotrione	Plasma Blood spots	Plasma: 0-100 μmol/L Blood spots: 0-50 μmol/L LOD 0.18 μmol/L	2.8-7.3 3.3-11.7	73
³ Deproteinisation with ³ ACN ₃₂	Capillary electrophoresis with diode array detection at 278 nm	NTBC	Serum	25-200 μmol/L LOQ 10.6 μmol/L LOD 3.17 μmol/L	<2.43	74
Deproteinisation with ACN 35	LC-MS/MS using a 15 cm x 2.0 mm C18 3 μ m column. Gradient: 0.1 %. FA/0.01 % TFA in ACN. RT 7 min	NTBC IS: Mesotrione	Serum	2.5-40 μmol/L LOQ 0.35 μmol/L LOD 0.1 μmol/L	2.8-13.6	75
36 3Acidification with 1M 3BICI	Infra-red spectrometry	HGA	Urine	0-60 mmol/L	Not stated	76

~						
³ Dilution with ⁴ phosphate buffer pH2 ₅	HPLC using a 15 cm x 3 mm basic 3	NTBC	Plasma	0.3-68 μmol/L	3.0-13.5	77
8Samples dried and 9derivatisation with 17BDMS and ACN	Gas chromatography	HGA IS: 1,2- ¹³ C ₂ HGA	Plasma	5-10 ng/mL	Not stated	78
1Plasma - 1deproteinisation with 1perchloric acid. 1durine - acidification 1swith HCI	HPLC using a 10 cm x 4.6 mm, C18 3 µm column. Gradient: orthophosphoric acid in MeOH. RT 8 min. UV detection at 290 nm	HGA IS: 4-Amino-2 chlorobenzoic acid	Plasma Urine	Linear up to 0.15 mmol/L Linear up to 0.15 mmol/L LOD 3 pmol/L	<2.9 <3.5	69
16erum - 1deproteinisation with 180% TCA. 1brine – acidification 2with acetic acid	HPLC using a 20 cm x 4 mm C18 5 µm column. Gradient: MeOH to 10 mmol acetic acid. RT 15 min. UV detection at 292 nm. Plasma and urine diluted in 10 mmol acetic acid containing IS.	HGA IS: 3,4- Dihydroxyphenylacetic acid	Plasma Urine	5.9-59 μmol/L 5.9-59 μmol/L LOD 2 ng/mL	<2.8	79
2Unacidified urine 23 adiluted with 10mmol IS	1D NMR spectroscopy (89.99 MHz). RT 15 min	HGA IS: d₄-TSP	Urine	5-125 mmol/L	Not stated	80
iquid – liquid gextraction with ethyl gecetate	TLC with HPLC electrochemical detection.	HGA	Serum Urine	10 ng/mL-100 μg/mL 20 μg/mL-4.8 mg/mL LOD 1 ng/mL	Not stated	81
2Serum - 2deproteinisation with 360%TCA. 3Urine – acidification 3With concentrated HCI.	High voltage electrophoresis. RT 70 min.	HGA	Serum Urine	Linear up to 15 μg/mL Linear up to 15 μg/mL	Not stated	82
	ummary of targeted analytical methodo	ologies reported for the m	neasurement o	of HGA, tyrosine and nitisino	ne in patients	
with AKU	TYR – tyrosine: HGA – homogentisic a	acid [.] PHF – phenylalanin	e· NTBC – niti	isinone: IS – internal standar	d· MeOH –	

with AKU. TYR – tyrosine; HGA – homogentisic acid; PHE – phenylalanine; NTBC – nitisinone; IS – internal standard; MeOH –

methanol; FA – formic acid; LOQ – limit of quantification; LOD – limit of detection; TSP – trimethylsilylpropanoic acid; RT – run time;

TBDMS – t-butyldimethylsilyl; TFA - trifluoroacetic acid; TCA – trichloroacetic acid. * - urine sample collected onto Mitra microsampling device

Metabolomics

Traditionally the diagnosis of inborn errors of metabolism have heavily relied on targeted analysis in biological fluids, including urine, serum and cerebrospinal fluid using a range of analytical techniques including chromatography and mass spectrometry based techniques. Over the last 10 years there has been increasing interest in utilising a non-targeted 'hypothesis-free' approach to evaluate the metabolome.⁸³

Typically high resolution accurate mass spectrometry and nuclear magnetic resonance techniques are used when adopting this approach; this offers major potential benefits for improving our understanding of metabolic disease and response to treatment, and the delivery of personalised healthcare.⁸⁴ The major challenges in performing non-targeted metabolomics in a clinical setting are study design,⁸⁵ quality control⁸⁶ and the validation of analytical and chemometric methodologies.⁸⁷⁻⁸⁹

Gertsman et al.⁹⁰ was the first to report on the use of high resolution accurate mass spectrometry (HRAMS) to evaluate the serum metabolome of patients with AKU taking nitisinone (2-8 mg daily) over a period of 6 months to 3.5 years. This small study revealed the expected decrease in HGA and increase in tyrosine following treatment with nitisinone. This untargeted analysis also revealed significant increases in acetyl- and γ -glutamyltyrosine, which is not surprising due to the significant hypertyrosinaemia that is observed following treatment with nitisinone. In a separate publication related to the same study⁹¹ they reported novel disturbances in tryptophan metabolism following treatment with nitisinone. Specifically indole-

carboxyaldehyde, indole-3-pyruvate and indole-3-lactate were shown to increase five-fold. It was proposed the tyrosine metabolite 4-hydroxyphenylpyruvate, which increases significantly following nitisinone therapy upregulates tryptophan aminotransferase activity resulting in downstream changes in the concentration of tryptophan metabolites and not tryptophan itself. The significance of this is unknown, it has been suggested that aromatic ketoacids increase the affinity of tryptophan transaminase for tryptophan, ⁹² thus altering its metabolism.

Davison et al.⁹³ also reported increases in serum acetyl- and γ -glutamyltyrosine following treatment with nitisinone using HRAMS, but interesting only observed a change in indole-3-lactate. This study did show increases in other tryptophan metabolites including trigonelline and quinoline carboxylic acid. Novel changes were also observed in metabolites relating to the citric acid cycle (decrease in succinate and α -ketoglutarate) and xanthine metabolism (decrease in uridine and inosine). It was suggested that these changes along with those observed in acetyl- and γ -glutamyltyrosine relate to changes in the redox state of the cell following treatment with the HGA lowering agent nitisinone.

Increases in 4-hydroxyphenylacetate, 4-hydroxybenzaldehyde and benzaldehyde were also reported following nitisinone treatment. The significance of the latter two metabolites is uncertain, but was suggested that they relate to the ochronotic pigment observed in AKU. The increase in 4-hydroxyphenylacetate is thought to result from increased activity of gut microbiota following treatment with nitisinone due to the presence of less oxidative stress.

Norman et al.⁹⁴ has also reported novel changes in urinary tryptophan and related metabolites in patients with AKU treated with nitisinone. In this study urinary indoxyl sulphate, tryptophan and kynurenine decreased whilst xanthurenic acid increased following treatment. This study supports the changes reported in 4-hydroxybenzaldehyde and 4-hydroxyphenylacetate, ⁹³ but also reported novel changes in, 4-coumarate, tyramine, mandelic acid and phenylacetic acid. Interestingly a number of changes were also observed in purine metabolism. Importantly many of these changes reported in patients were also observed in a murine model of AKU treated with nitisinone that was used in this study reinforcing that the changes observed were a consequence of nitisinone therapy.

What AKU has told us about osteoarthritis

The study of tissue from patients and murine models with AKU has significantly advanced our understanding of the pathophysiology underlying the progression of ochronosis and the related osteoarthropathy, revealing vital information on the microanatomical, cellular and biochemical changes observed in joints. It has also provided a unique platform to allow us to better understand the pathophysiology of more common diseases like osteoarthritis (OA), and has revealed significant overlap between the two diseases.

In AKU, joint destruction is related to the deposition of pigmented polymers and in OA this results from the deposition of carbohydrates. The former leading to the progression of ochronosis and the latter the formation of advanced glycation end (AGE) products. A consequence observed in both diseases is that changes to the composition and organisation of the extracellular matrix, including loss of

proteoglycans and disruption of collagen fibrils are observed. The lack of protective proteoglycans means collagen is exposed and susceptible to the action of reactive pigmented polymers and AGE products, respectively. The consequence of chemical modification in OA and AKU is that collagen becomes stiff and less tolerant to mechanical loading leading to structural damage. Certainly in AKU and theoretically in OA this process starts in calcified tissue and spreads throughout the hyaline cartilage to the articular surface. ⁹⁵ This leads to abnormal transmission of mechanical loading through cartilage to underlying bone, which results in damage to the subchondral plate and load-induced remodelling, and the formation of high-density mineralized protrusions. ⁹⁶ The latter was first observed in the cartilage associated with the femoral head from a patient with osteoarthropathy of AKU and subsequently found that these are also present in hip and knee joints from patients with OA. Additionally, focal loss and sclerosis of the subchondral plate, ⁹⁵ as well as aberrant remodelling of the underlying bone, including formation of trabecular excrescences has been observed. ⁹⁷

Conclusions

AKU is a rare, yet iconic inborn error of metabolism that was first reported to follow the laws of Mendelian inheritance by Sir Archibald Garrod over 120 years ago. Since this time, remarkable progress through collaborative working between patients, scientists and clinicians in a relatively short period of time has resulted in the use of a disease-modifying therapy for the treatment of this disease. AKU should serve as a model for other less well understood diseases for which there is currently no treatment. Our attempts to better understand AKU has also enabled a better understanding of the common disease osteoarthritis.

References

- Stenn FF, Milgram JW, Lee SL, et al. Biochemical identification of homogentisic acid pigment in an ochronotic Egyptian mummy. Science 1977; 197: 566-568.
- 2. Boedeker C. Ueber das Alcapton; ein neuer Beitrag zur Frage: Welche Stoffe des Hams kannen Kupferreduction bewirken? *Ztschr f rat Med* 1859; 7: 130.
- 3. Virchow R. Ein fall von allgemeiner ochronose der knorpel und knorpelähnlichen theile. *Arch Pathol Anat* 1866:212.
- 4. Wolkow M, Baumann E. Ueber das Wesen der Alkaptonurie. *Z Phys Chem* 1891; 15: 228–85.
- 5. Garrod AE. "The incidence of alkaptonuria: a study in chemical individuality. 1902 [classical article]." *Yale J Biol Med* 2002; 75(4): 221-231.
- 6. Scriver CR. Garrod's Croonian Lectures (1908) and the charter 'Inborn Errors of Metabolism': albinism, alkaptonuria, cystinuria, and pentosuria at age 100 in 2008. *J Inherit Metab Dis* 2008; 31(5): 580-98.
- 7. La Du BN, Zannoni VG, Laster L, et al. "The nature of the defect in tyrosine metabolism in alcaptonuria." *J Biol Chem* 1958; 230(1): 251-260.
- 8. Taylor JM, Hughes AT, Milan AM, et al. Evaluation of the Mitra microsampling device for use with key urinary metabolites in patients with Alkaptonuria. *Bioanalysis* 2018; 10(23): 1919–32.
- 9. Fernandez-Canon JM, Granadino B, Beltran-Valero de Bernabe D, et al. The molecular basis of alkaptonuria. *Nature Genet* 1996; 14: 19-24.
- 10. Titus GP, Mueller HA, Burgner J, et al. Crystal structure of human homogentisate dioxygenase. *Nat Struct Biol* 2000; 7(7): 542-6.
- 11. Zatkova A. An update on molecular genetics of Alkaptonuria (AKU). *J Inherit Metab Dis* 2011; 34: 1127-36.
- 12. Sakthivel S, Zatkova A, Nemethova M, et al. Mutation screening of the HGD gene identifies a novel alkaptonuria mutation with significant founder effect and high prevalence. *Ann Hum Genet* 2014; 78: 155-64.
- 13. Nemethova M, Radvanszky J, Kadasi L, et al. Twelve novel HGD gene variants identified in 99 alkaptonuria patients: focus on 'black bone disease' in Italy. *Eur J Hum Genet* 2016; 24(1): 66-72.
- 14. Goicoechea De Jorge E, Lorda I, Gallardo ME, et al. Alkaptonuria in the Dominican Republic: identification of the founder AKU mutation and further evidence of mutation hot spots in the HGO gene. *J Med Genet* 2002; 39: E40.

- 15. Srsen S, Muller CR, Fregin A, et al. Alkaptonuria in slovakia: thirty-two years of research on phenotype and genotype. *Mol Genet Metab* 2002; 75: 353–359.
- 16. Zouheir Habbal M, Bou-Assi T, Zhu J, et al. First report of a deletion encompassing an entire exon in the homogentisate 1,2-dioxygenase gene causing alkaptonuria. *PLoS One* 2014 18; 9(9): e106948.
- 17. Montagutelli X, Lalouette A, Coudé M, et al. AKU a mutation of the mouse homologous to human alkaptonuria, maps to chromosome 16. *Genomics* 1994; 19: 9-11.
- 18. Manning K, Fernandez-Canon JM, Montagutelli X, et al. Identification of the mutation in the alkaptonuria mouse model. (Abstract) *Hum Mutat* 1999; 13(2): 171.
- 19. Taylor AM, Preston AJ, Paulk NK et al. "Ochronosis in a murine model of alkaptonuria is synonymous to that in the human condition." *Osteoarthritis Cartilage* 2012; 20(8): 880-886.
- 20. Preston AJ, Keenan CM, Sutherland H, et al. "Ochronotic osteoarthropathy in a mouse model of alkaptonuria, and its inhibition by nitisinone." *Ann Rheum Dis* 2014; 73(1): 284-289.
- 21. Keenan CM, Preston AJ, Sutherland H, et al. Nitisinone Arrests but Does Not Reverse Ochronosis in Alkaptonuric Mice. *JIMD Rep* 2015; 24: 45-50.
- 22. Helliwell TR, Gallagher JA, Ranganath L. Alkaptonuria--a review of surgical and autopsy pathology. *Histopathology* 2008; 53(5): 503–12.
- 23. Srsen S, Srsnová K, Lányi A. [Clinical manifestation of alkaptonuria in relation to age (author's transl)]. *Bratisl Lek Listy* 1982; 77(6): 662–9.
- 24. Cox TF, Ranganath L. A quantitative assessment of alkaptonuria: testing the reliability of two disease severity scoring systems. *J Inherit Metab Dis* 2011; 34(6): 1153–62.
- 25. Ranganath LR, Cox TF. Natural history of alkaptonuria revisited: analyses based on scoring systems. *J Inherit Metab Dis* 2011; 34(6): 1141–51.
- 26. Ranganath LR, Jarvis JC, Gallagher JA. Recent advances in management of alkaptonuria. *J Clin Pathol* 2013; 66(5):367–73.
- 27. Phornphutkul C, Introne WJ, Perry MB, et al. Natural history of alkaptonuria. *N Engl J Med* 2002; 26:347(26): 2111–21.
- 28. Introne WJ, Perry MB, Troendle J, et al. A 3-year randomized therapeutic trial of nitisinone in alkaptonuria. *Mol Genet Metab* 2011; 103(4): 307–14.

- 29. Ranganath LR, Milan AM, Hughes AT, et al. Suitability Of Nitisinone In Alkaptonuria 1 (SONIA 1): an international, multicentre, randomised, openlabel, no-treatment controlled, parallel-group, dose-response study to investigate the effect of once daily nitisinone on 24-h urinary homogentisic acid excretion in patients with alkaptonuria after 4 weeks of treatment. *Ann Rheum Dis* 2016; 75(2): 362–7.
- 30. Milan AM, Hughes AT, Davison AS, et al. The effect of nitisinone on homogentisic acid and tyrosine: a two-year survey of patients attending the National Alkaptonuria Centre, Liverpool. *Ann Clin Biochem* 2017; 54(3): 323–30.
- 31. Davison AS, Milan AM, Hughes AT, et al. Serum concentrations and urinary excretion of homogentisic acid and tyrosine in normal subjects. *Clin Chem Lab Med* 2015; 53(3): e81-3.
- 32. Davison AS, Norman BP, Smith EA, et al. Serum Amino Acid Profiling in Patients with Alkaptonuria Before and After Treatment with Nitisinone. *JIMD Rep* 2018; 41: 109-117
- 33. de Haas V, Carbasius Weber EC, de Klerk JB, et al. The success of dietary protein restriction in alkaptonuria patients is age-dependent. *J Inherit Metab Dis* 1998; 21(8): 791–8.
- 34. Rynes RI, Leland Sosman J, Holdsworth DE. Pseudogout in ochronosis. *Arthritis & Rheumatism* 1975; 18(1): 21–5.
- 35. Gil JA, Wawrzynski J, Waryasz GR. Orthopedic Manifestations of Ochronosis: Pathophysiology, Presentation, Diagnosis, and Management. *Am J Med* 2016; 129(5): 536.e1–6.
- 36. Akeda K, Kasai Y, Kawakita E, et al. Thoracic myelopathy with alkaptonuria. *Spine* 2008; 15:33(2): E62–5.
- 37. Donaldson CJ, Mitchell SL, Riley LH 3rd, et al. "As Black as Ink": A Case of Alkaptonuria-Associated Myelopathy and a Review of the Literature. *Spine* 2019; 1:44(1): E53–9.
- 38. Pettit SJ, Fisher M, Gallagher JA, et al. Cardiovascular manifestations of Alkaptonuria. *J Inherit Metab Dis* 2011; 34(6): 1177–81.
- 39. Lock EA, Ellis MK, Gaskin P, et al. From toxicological problem to therapeutic use: the discovery of the mode of action of 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC), its toxicology and development as a drug. *J Inherit Metab Dis* 1998; 21(5): 498–506.
- 40. Lindstedt S, Holme E, Lock EA, et al. Treatment of hereditary tyrosinaemia type I by inhibition of 4-hydroxyphenylpyruvate dioxygenase. *Lancet* 1992; 3:340(8823): 813–7.

- 41. McKiernan PJ. Nitisinone for the treatment of hereditary tyrosinemia type I. *Expert Opinion on Orphan Drugs* 2013; 1(6):491–7.
- 42. Suwannarat P, O'Brien K, Perry MB, et al. Use of nitisinone in patients with alkaptonuria. *Metabolism* 2005; 54(6): 719–28.
- 43. Sealock RR, Gladstone M, Steele JM. Administration of ascorbic acid to an alkaptonuric patient. *Proc Soc Exp Biol Med* 1940; 44: 580–3.
- 44. Wolff JA, Barshop B, Nyhan WL, et al. Effects of ascorbic acid in alkaptonuria: alterations in benzoquinone acetic acid and an ontogenic effect in infancy. *Pediatr Res* 1989; 26: 140–4.
- 45. Ranganath LR, Khedr M, Milan AM, et al. Nitisinone arrests ochronosis and decreases rate of progression of Alkaptonuria: Evaluation of the effect of nitisinone in the United Kingdom National Alkaptonuria Centre. *Mol Genet Metab* 2018; 125(1-2): 127–34.
- 46. Griffin R, Psarelli EE, Cox TF, et al. Data on items of AKUSSI in Alkaptonuria collected over three years from the United Kingdom National Alkaptonuria Centre and the impact of nitisinone. *Data Brief* 2018; 20: 1620–8.
- 47. Aktuglu-Zeybek AC, Zubarioglu T. Nitisinone: a review. *Orphan Drugs:* Research and Reviews 2017; 7: 25–35.
- 48. W.G. van Ginkel, R. Jahja, S.C. Huijbregts, et al., Neurocognitive outcome in tyrosinemia type 1 patients compared to healthy controls. *Orphanet J Rare Dis* 2016; 11(1): 87.
- 49. Bendadi F, de Koning TJ, Visser G, et al. Impaired cognitive functioning in patients with tyrosinemia type I receiving nitisinone. *J Pediatr* 2014; 164(2): 398–401.
- 50. Thimm E, Richter-Werkle R, Kamp G, et al. Neurocognitive outcome in patients with hypertyrosinemia type I after long-term treatment with NTBC. *J Inherit Metab Dis* 2012; 35(2): 263–8.
- 51. Pohorecka M, Biernacka M, Jakubowska-Winecka A, et al. Behavioral and intellectual functioning in patients with tyrosinemia type I. *Pediatr Endocrinol Diabetes Metab* 2012; 18(3): 96–100.
- 52. de Laet C, Dionisi-Vici C, Leonard JV, et al. Recommendations for the management of tyrosinaemia type 1. *Orphanet J Rare Dis* 2013; 8:8.
- 53. Davison AS, Norman B, Milan AM, et al. Assessment of the Effect of Once Daily Nitisinone Therapy on 24-h Urinary Metadrenalines and 5-Hydroxyindole Acetic Acid Excretion in Patients with Alkaptonuria After 4 Weeks of Treatment. *JIMD Rep* 2018; 41: 1–10.

- 54. Davison AS, Harrold JA, Hughes G, et al. Clinical and biochemical assessment of depressive symptoms in patients with Alkaptonuria before and after two years of treatment with nitisinone. *Mol Genet Metab* 2018; 125(1-2): 135–43.
- 55. Eisenhofer G, McCarty R, Pacak K, et al. Disprocynium24, a novel inhibitor of the extraneuronal monoamine transporter, has potent effects on the inactivation of circulating noradrenaline and adrenaline in conscious rat. Naunyn Schmiedebergs Arch Pharmacol 1996; 354: 287–294
- 56. Davison AS, Strittmatter N, Sutherland H, et al. Assessing the effect of nitisinone induced hypertyrosinaemia on monoamine neurotransmitters in brain tissue from a murine model of alkaptonuria using mass spectrometry imaging. *Metabolomics* 2019; 15(5): 68.
- 57. Stewart RMK, Briggs MC, Jarvis JC, et al. Reversible Keratopathy Due to Hypertyrosinaemia Following Intermittent Low-Dose Nitisinone in Alkaptonuria: A Case Report. *JIMD Rep* 2014; 17: 1-6.
- 58. Khedr M, Judd S, Briggs MC, et al. Asymptomatic Corneal Keratopathy Secondary to Hypertyrosinaemia Following Low Dose Nitisinone and a Literature Review of Tyrosine Keratopathy in Alkaptonuria. *JIMD Rep* 2018; 40: 31–7.
- 59. White A, C Tchan M. Nitisinone-Induced Keratopathy in Alkaptonuria: A Challenging Diagnosis Despite Clinical Suspicion. *JIMD Rep* 2018; 40: 7-9.
- 60. Lock EA, Gaskin P, Ellis M, et al. Tyrosinemia produced by 2-(2-nitro-4-trifluoromethylbenzoyl)-cyclohexane-1,3-dione (NTBC) in experimental animals and its relationship to corneal injury. *Toxicol Appl Pharmacol* 2006; 15:215(1): 9–16.
- 61. Holme E, Lindstedt S. Tyrosinaemia type I and NTBC (2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione). *J Inherit Metab Dis* 1998; 21(5): 507-17.
- 62. Gissen P, Preece MA, Willshaw HA, et al. Ophthalmic follow-up of patients with tyrosinaemia type I on NTBC. *J Inherit Metab Dis* 2003; 26(1): 13-6.
- 63. Pencharz PB, Hsu JW-C, Ball RO. Aromatic amino acid requirements in healthy human subjects. *J Nutr* 2007; 137(6): 1576S-1578S; discussion 1597S-1598S.
- 64. Committee on Medical Aspects of Food and Nutrition Policy (COMA). Dietary reference values for food energy and nutrients for the United Kingdom. In Report of the Panel on Dietary Reference Values of the Committee on Medical Aspects of Food Policy; H.M. Stationery Office: London, UK, 1991; pp. 1–210

- 65. Food and Nutrition Board (FNB) of the Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fibre, Fat, Fatty Acids, Cholesterol, Protein and Amino Acids (Macronutrients); The National Academies Press: Washington, DC, USA, 2005.
- 66. World Health Organisation (WHO). Dietary Reference Intakes for Energy, Carbohydrate, Fibre, Fat, Fatty Acids, Cholesterol, Protein and Amino Acids (Macronutrients); WHO Technical Report Series 935; World Health Organisation (WHO): Geneva, Switzerland, 2007.
- 67. Hughes AT, Milan AM, Christensen P, et al. Urine homogentisic acid and tyrosine: simultaneous analysis by liquid chromatography tandem mass spectrometry. *J Chromatogr B Analyt Technol Biomed Life Sci* 2014; 963: 106–12.
- 68. Hughes AT, Milan AM, Davison AS, et al. Serum markers in alkaptonuria: simultaneous analysis of homogentisic acid, tyrosine and nitisinone by liquid chromatography tandem mass spectrometry. *Ann Clin Biochem* 2015; 52(5): 597–605.
- 69. Bory C, Boulieu R, Chantin C, et al. Diagnosis of alcaptonuria: Rapid analysis of homogentisic acid by HPLC. *Clin Chim Acta* 1990; 189(1): 7–11.
- 70. Öztekin N, Balta GS, Cansever MŞ. Determination of homogentisic acid in urine for diagnosis of alcaptonuria: Capillary electrophoretic method optimization using experimental design. *Biomed Chromatogr* 2018; 32(7): e4216.
- 71. Jacomelli G, Micheli V, Bernardini G, et al. Quick Diagnosis of Alkaptonuria by Homogentisic Acid Determination in Urine Paper Spots. *JIMD Rep* 2017; 31: 51–6.
- 72. Davit-Spraul A, Romdhane H, Poggi-Bach J. Simple and fast quantification of nitisone (NTBC) using liquid chromatography-tandem mass spectrometry method in plasma of tyrosinemia type 1 patients. *J Chromatogr* Sci 2012; 50(5): 446–9.
- 73. Prieto JA, Andrade F, Lage S, et al. Comparison of plasma and dry blood spots as samples for the determination of nitisinone (NTBC) by high-performance liquid chromatography-tandem mass spectrometry. Study of the stability of the samples at different temperatures. *J Chromatogr B Analyt Technol Biomed Life Sci* 2011; 879(11-12): 671–6.
- 74. Cansever MS, Aktuğlu-Zeybek AC, Erim FB. Determination of NTBC in serum samples from patients with hereditary tyrosinemia type I by capillary electrophoresis. *Talanta* 2010; 80(5): 1846–8.

- 75. Herebian D, Spiekerkötter U, Lamshöft M, et al. Liquid chromatography tandem mass spectrometry method for the quantitation of NTBC (2-(nitro-4-trifluoromethylbenzoyl)1,3-cyclohexanedione) in plasma of tyrosinemia type 1 patients. *J Chromatogr B Analyt Technol Biomed Life Sci* 2009; 877(14-15): 1453–9.
- 76. Markus APJA, A Patrick J, Swinkels DW, et al. New technique for diagnosis and monitoring of alcaptonuria: quantification of homogentisic acid in urine with mid-infrared spectrometry. *Anal Chim Acta* 2001; 429(2): 287–92.
- 77. Bielenstein M, Astner L, Ekberg S. Determination of 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione in plasma by direct injection into a coupled column liquid chromatographic system. *J Chromatogr B Biomed Sci Appl* 1999; 730(2): 177–82.
- 78. Deutsch JC, Santhosh-Kumar CR. Quantitation of homogentisic acid in normal human plasma. *J Chromatogr B Biomed Appl* 1996; 677(1): 147–51.
- 79. Akesson B, Forslind K, Wollheim F. Analysis of homogentisic acid in body fluids by high-performance liquid chromatography. *J Chromatogr* 1987; 413: 233–6.
- 80. Yamaguchi S, Koda N, Ohashi T. Diagnosis of alkaptonuria by NMR urinalysis: Rapid qualitative and quantitative analysis of homogentisic acid. *Tohoku J Exp Med* 1986; 150(2): 227–8.
- 81. Zoutendam PH, Bruntlett CS, Kissinger PT. Determination of homogentisic acid in serum and urine by liquid chromatography with amperometric detection. *Anal Chem* 1976; 48(14): 2200–2.
- 82. Lustberg TJ, Schulman JD, Seegmiller JE. The preparation and identification of various adducts of oxidized homogentisic acid and the development of a new sensitive colorimetric assay for homogentisic acid. *Clin Chim Acta* 1971; 35(2): 325–33.
- 83. Wevers RA, Blau N. Think big think omics. *J Inherit Metab Dis* 2018; 41(3): 281–3.
- 84. Beger RD, Dunn W, Schmidt MA, et al. Metabolomics enables precision medicine: "A White Paper, Community Perspective." *Metabolomics* 2016; 12(10): 149.
- 85. Kirwan JA, Brennan L, Broadhurst D et al. Preanalytical Processing and Biobanking Procedures of Biological Samples for Metabolomics Research: A White Paper, Community Perspective (for "Precision Medicine and Pharmacometabolomics Task Group"-The Metabolomics Society Initiative). *Clin Chem* 2018; 64(8): 1158–82.

- 86. Broadhurst D, Goodacre R, Reinke SN, et al. Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies. *Metabolomics* 2018; 14(6): 72.
- 87. Dunn WB, Broadhurst D, Begley P, et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. *Nat Protoc* 2011; 6(7): 1060–83.
- 88. Want EJ, Wilson ID, Gika H, et al. Global metabolic profiling procedures for urine using UPLC–MS. *Nat Protoc* 2010; 5(6): 1005–18.
- 89. Beckonert O, Keun HC, Ebbels TMD, et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. *Nat Protoc* 2007; 2(11): 2692–703.
- 90. Gertsman I, Barshop BA, Panyard-Davis J, et al. Metabolic Effects of Increasing Doses of Nitisinone in the Treatment of Alkaptonuria. *JIMD Rep* 2015; 24:13–20.
- 91. Gertsman I, Gangoiti JA, Nyhan WL, et al. Perturbations of tyrosine metabolism promote the indolepyruvate pathway via tryptophan in host and microbiome. *Mol Genet Metab* 2015; 114(3): 431–7.
- 92. Lees GJ, Weiner N. Transaminations between amino acids and keto acids elevated in phenylketonuria and maple syrup urine disease. *J Neurochem* 1973; 20(2): 389–403.
- 93. Davison AS, Norman BP, Ross GA et al. Evaluation of the serum metabolome of patients with Alkaptonuria before and after two years of treatment with nitisinone using LC-QTOF-MS. *JIMD Rep* 2019; 48: 67–74.
- 94. Norman BP, Davison AS, Ross GA, et al. A Comprehensive LC-QTOF-MS Metabolic Phenotyping Strategy: Application to Alkaptonuria. *Clin Chem* 2019; 65(4): 530–9.
- 95. Taylor AM, Boyde A, Wilson PJ, et al. The role of calcified cartilage and subchondral bone in the initiation and progression of ochronotic arthropathy in alkaptonuria. *Arthritis Rheum* 2011; 63: 3887-3896.
- 96. Boyde A, Davis GR, Mills, et al. On fragmenting, densely mineralised acellular protrusions into articular cartilage and their possible role in osteoarthritis. *J Anat* 2014;225:436-446
- 97. Taylor AM, Boyde A, Davidson JS, et al. Identification of trabecular excrescences, novel microanatomical structures, present in bone in osteoarthropathies. *Eur Cell Mater* 2012; 23: 300-308.

Declaration of conflicting interests

Not required

Funding

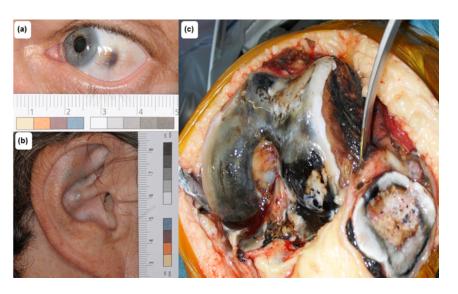
This research received no specific grant from any funding agency in the public, commercial, or not-for profit sectors. Andrew S Davison is funded through a National Institute for Health Research (NIHR) Doctoral Research Fellowship (grant code: HCS DRF-2014-05-009). This article presents independent research funded by NIHR. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care.

Ethical approval

Not applicable


Guarantor

ASD


Contributorship

All authors contributed to writing this manuscript. ASD integrated contributions, revised and edited entire review.

Figure 1 $\mathcal C$ hemical structures and associated pKa's (denoted in blue) of (a) gentisic acid and (b) homogentisic acid

Figure 2.Tyrosine metabolic pathway (adapted from Taylor et %).- highlighting the site of the enzyme defect observed in AKU and the site of action of nitisinone, a reversible competitive inhibitor of 4-hydroxyphenylpyruvic dioxygenase (HPPD EC 1.13.11.27).

Figure 3Clinical features frequently observed in AKU that should alert a clinician to its possible diagnosis. (a) Pigmentation of the sclera of the eye, (b) slate grey pigmentation of cartilage in the ear and (c) extensive osteoarthritis of the large joints. Here is an image of a knee joint at surgery showing pigmentation and fragmentation of the articular cartilage.

CLINICAL AKUSSI							
Feature	Test	Feature	Test				
Eye ochronosis: Right eye nasal* Right eye temporal*	Photograph Photograph	Eye ochronosis: Left eye nasal* Left eye temporal*	Photograph Photograph				
Ear ochronosis: Right ear**	Photograph	Ear ochronosis: Left ear**	Photograph				
Prostate stones: (4 per episode)	Ultrasound/ History	Kidney stones: (4 per episode)	Ultrasound/ History				
Osteopenia: (4)	CT-BMD	Hearing impairment: (4)	History				
Aortic sclerosis: (6), ac	ortic stenosis: (mild, mo	oderate, severe) (8, 10, 12)	Echocardiography				
	JOINT	AKUSSI					
Fracture: (8 per fracture)	History	Muscle rupture: (8 per rupture)	History				
Ligament rupture: (8 per rupture)	History	Tendon rupture: (8 per rupture)	History				
Joint pain score: (1 for each large joint are	History						
Scintigraphic scan join (2 for each large joint; 14	^{18F} PET-CT						
Number of arthroscopi	History						
Number of joint replace	History						
	SPINE AKUSSI						
Spinal pain score: (2 each for cervical, thor	History						
Scintigraphic scan spin (6 areas; 4 points for each thoracic, cervical, sacroi	^{18F} PET-CT						
Kyphosis: (4)	X-ray						
Scoliosis: (4)	X-ray						
ALL AKUSSI (CLINICAL + JOINT + SPINE)							

- **Table 1.** Summary of Alkaptonuria Severity Score Index. The various clinical
- 2 features observed in AKU are scored in the manner indicated in the table.
- Assessments include subjective pain scoring, photographs, history, ultrasound
- 4 abdomen, echocardiogram, computed tomography bone densitometry (CT-BMD),
- 5 x-ray spine and positron emission tomography—computed tomography (18FPET-CT)
- 6 scan. *Eye pigmentation: 1, 2 and 3 points for slight, moderate and marked
- 7 conjunctival pigmentation and 4, 6 and 8 points for scleral pigmentation; **Ear
- pigmentation: 2 and 4 points for slight and marked pigmentation.²⁴⁻²⁵

Treatment modality	Mechanism of action	Nature	
Joint replacements	Replacing damaged organ	Palliative	
Acupuncture	Mediated by endogenous opioids	Supportive	
Oral analgesia	Relief from pain depending on drug	Supportive	
Parenteral Analgesia	Mainly opioid effect	Supportive	
Physiotherapy	Mechanical stretching and strengthening	Supportive	
Transcutaneous electrical nerve stimulation	Activation of endogenous opioids	Supportive	
Ascorbic acid	Anti-oxidant preventing pigment formation	Unproven as disease modifying	
Chondroitin/Glucosamine	Production of glycosaminoglycans	Unproven as disease modifying	
Low protein diet	Reduction in tyrosine intake	Unproven as disease modifying	

Table 2. Supportive and palliative treatment modalities available for AKU

Trial design	n	Pre nitisinone concentrations	Dose	Duration	Overall results	Additional findings	Reference
Open, uncontrolled proof of concept. No dietary modifications	58#	[HGA] _s 39.3±15.5 [HGA] _U 2.4-73 [Tyrosine] _s 79±18	0.35-1.4 mg twice daily	9 and 10 days	73-95 % reduction in [HGA] _U	Increased urinary hydroxyphenylpyruvate 10-15 fold increase in [Tyrosine] _s	27
Open-label, uncontrolled, proof of concept. Reduced protein intake (last week only)	9	[HGA] _s 10.2±6.2 [HGA] _U 23.9±10.6 [Tyrosine] _s 68±18	0.35-1.05 mg twice daily	15 weeks (n=5 completed)	94 % reduction in [HGA] _U Serum HGA below LOQ	[HGA] _U reduced to ~97% when protein restricted (<40 g/day) 10 fold increase in [Tyrosine] _s	42
Randomised, parallel group, single blind	20	[HGA] _s 18.7-62.4 (mean 34.1) [HGA] _U 33.8±11.8 [Tyrosine] _s 60±13	No treatment, 2 mg daily	36 Months	>95 % reduction in [HGA] _U 95 % reduction in [HGA] _S		28
Randomised, open label, parallel-group design	40	[HGA] _U 14.4-69.5	No treatment, 1, 2, 4, 8 mg once daily	4 weeks	98.8 % reduction in [HGA] _U (on 8mg dose)	10-12 fold increase in [Tyrosine] _s from baseline	29
Off licence use of nitisinone	28	[HGA] _s 30.0±12.9 [HGA] _U 20.6±5.5 [Tyrosine] _s 42±13.3	2 mg daily after 3 months (2 mg given every other day up to 3 months)	24 Months	88.8 and 94.1 % reduction in [HGA] _U at 3 months and two years. 83.2 % reduction in [HGA] _S at two years	Serum nitisinone 1.58±0.52 µmol/L at two years	30

- Table 3. Summary of clinical studies that have evaluated nitisinone for the treatment of AKU. # only 2/58 received nitisinone; LOQ
- $_{2}$ lower limit of quantification. [HGA]_S serum HGA concentration; [HGA]_U urinary HGA concentration; [Tyrosine]_S serum
- tyrosine concentration; [Tyrosine]_U urinary tyrosine concentration. All serum and urine HGA and tyrosine concentrations are
- expressed in μ mol/L and mmol/24hr, respectively and as mean±SD where data were available otherwise a range is quoted.

3 4 Sample preparation	Analytical technique	Metabolites measured	Matrix	Analytical measuring range	Inter-assay CV (%)	Reference
Acidification with 5N Sulphuric acid	LC-MS/MS using a 10 cm x 3.0 mm, C18 3 μ m column. Gradient: 0.1%. FA in MeOH. RT 7 min	TYR, HGA, PHE IS: d ₄ -TYR, ¹³ C ₆ -HGA, D ₅ -PHE	Urine*	TYR: 10-2000 μmol/L HGA: 2-4000 μmol/L PHE: 10-500 μmol/L	Not stated	8
9Sample dilution 10	Capillary electrophoresis with UV- Visible detection at 190 nm	HGA	Urine	0.02-0.16 mmol/L LOD 3.33 μmol/L	Not stated	70
130µL urine on filter 1paper eluted with 1phosphate buffer 14	HPLC using a 7.5 cm x 4.6 mm C18 3 μm column. Gradient: phosphate buffer to MeOH. RT 18 min. Detection at 260-280 nm	HGA	Urine	20-800 μmol/L LOQ 5 μmol/L	Not stated	71
¹ Deproteinisation with ¹ Berchloric acid ¹⁷	LC-MS/MS using a 10 cm x 3.0 mm C18 3 μ m column. Gradient: 0.1 %. FA in MeOH. RT 7 min	TYR, HGA, NTBC IS: d ₂ -TYR, ¹³ C ₆ -HGA, ¹³ C ₆ -NTBC	Serum	TYR: 10-500 μmol/L HGA: 3-2000 μmol/L NTBC: 0.2-10 μmol/L	<5 <8 <10	68
Acidification with 5N Sulphuric acid	LC-MS/MS using a 10 cm x 3.0 mm C18 3 µm column. Gradient 0.1 %. FA in MeOH at 0.6 mL/min. RT 7 min	TYR, HGA, IS: d ₂ -TYR, ¹³ C ₆ -HGA	Urine	TYR: 20-4000 μmol/L HGA: 20-16,000 μmol/L	<10 <5	67
⊋Deproteinisation with ⊇ACN and IS 24 25	LC-MS/MS using a 5 cm x 2.1 mm C18 1.7 μm column. Gradient: ammonium acetate in MeOH. RT 4 min	NTBC IS: 2-Nitro-4- (trifluoromethly) benzoic acid	Plasma	0.75-150 μmol/L LOD 0.15 μmol/L	<20	72
2₽lasma - precipitation 2₩ith ACN. 2₿lood spot - elution 2₩ith MeOH.	LC-MS/MS using a 15 cm x 4.6 mm C8 5 μm column. RT 12 min	NTBC IS: Mesotrione	Plasma Blood spots	Plasma: 0-100 μmol/L Blood spots: 0-50 μmol/L LOD 0.18 μmol/L	2.8-7.3 3.3-11.7	73
³ Deproteinisation with ³ ACN ₃₂	Capillary electrophoresis with diode array detection at 278 nm	NTBC	Serum	25-200 μmol/L LOQ 10.6 μmol/L LOD 3.17 μmol/L	<2.43	74
3Deproteinisation with 3ACN 35	LC-MS/MS using a 15 cm x 2.0 mm C18 3 μ m column. Gradient: 0.1 %. FA/0.01 % TFA in ACN. RT 7 min	NTBC IS: Mesotrione	Serum	2.5-40 µmol/L LOQ 0.35 µmol/L LOD 0.1 µmol/L	2.8-13.6	75
3Acidification with 1M ୟୁମCl	Infra-red spectrometry	HGA	Urine	0-60 mmol/L	Not stated	76

³ Dilution with	HPLC using a 15 cm x 3 mm basic 3	NTBC	Plasma	0.3-68 <i>µ</i> mol/L	3.0-13.5	77
⁴ phosphate buffer pH2	μ m column. Gradient: isocratic 50%					
6	ACN.					
7	Diode array detection at 278 nm					
Samples dried and	Gas chromatography	HGA	Plasma	5-10 ng/mL	Not stated	78
9derivatisation with		IS: 1,2- ¹³ C ₂ HGA				
17BDMS and ACN						
₁Plasma -	HPLC using a 10 cm x 4.6 mm, C18 3	HGA	Plasma	Linear up to 0.15 mmol/L	<2.9	69
1deproteinisation with	μ m column. Gradient: orthophosphoric	IS: 4-Amino-2	Urine	Linear up to 0.15 mmol/L	<3.5	
1perchloric acid.	acid in MeOH. RT 8 min.	chlorobenzoic acid		LOD 3 pmol/L		
1⊌rine - acidification	UV detection at 290 nm					
15vith HCl	LIDI O I OO I					
1§erum -	HPLC using a 20 cm x 4 mm C18 5 μ m	HGA	Plasma	5.9-59 μmol/L	<2.8	79
¹ deproteinisation with	column. Gradient: MeOH to 10 mmol	IS: 3,4-	Urine	5.9-59 μmol/L		
1\$0% TCA.	acetic acid. RT 15 min.	Dihydroxyphenylacetic		LOD 2 ng/mL		
¹ Urine – acidification	UV detection at 292 nm.	acid				
With acetic acid	Plasma and urine diluted in 10 mmol					
22	acetic acid containing IS.	1104		- 10-		
Unacidified urine	1D NMR spectroscopy (89.99 MHz).	HGA	Urine	5-125 mmol/L	Not stated	80
diluted with 10mmol IS	RT 15 min	IS: d ₄ -TSP		10 / 1 100 / 1	N	0.1
25 iquid – liquid	TLC with HPLC electrochemical	HGA	Serum	10 ng/mL-100 μg/mL	Not stated	81
28 xtraction with ethyl	detection.		Urine	20 μg/mL-4.8 mg/mL		
₂ acetate			ļ	LOD 1 ng/mL		
2§erum -	High voltage electrophoresis.	HGA	Serum	Linear up to 15 µg/mL	Not stated	82
2deproteinisation with	RT 70 min.		Urine	Linear up to 15 µg/mL		
3 5 0%TCA.						
3Urine – acidification						
3 with concentrated HCI.						

Table 4. Summary of targeted analytical methodologies reported for the measurement of HGA, tyrosine and nitisinone in patients

- with AKU. TYR tyrosine; HGA homogentisic acid; PHE phenylalanine; NTBC nitisinone; IS internal standard; MeOH –
- 4 methanol; FA formic acid; LOQ limit of quantification; LOD limit of detection; TSP trimethylsilylpropanoic acid; RT run time;

- TBDMS t-butyldimethylsilyl; TFA trifluoroacetic acid; TCA trichloroacetic acid. * urine sample collected onto Mitra
- 2 microsampling device